Matemática

Matemática
Matemática

domingo, 25 de agosto de 2013

OS 35 CAMELOS

Este problema é baseado em uma passagem do livro “O Homem que Calculava”, de Malba Tahan.

Nesta passagem, Beremiz – o homem que calculava – e seu colega de jornada encontraram três homens que discutiam acaloradamente ao pé de um lote de camelos.
Por entre pragas e impropérios gritavam, furiosos:
- Não pode ser!
- Isto é um roubo!
- Não aceito!
O inteligente Beremiz procurou informar-se do que se tratava.
- Somos irmão – esclareceu o mais velho – e recebemos como heranças esses 35 camelos. Segundo vontade de nosso pai devo receber a metade, o meu irmão Hamed uma terça parte e o mais moço, Harin, deve receber apenas a nona parte do lote de camelos. Contudo, não sabemos como realizar a partilha, visto que a mesma não é exata.
- É muito simples – falou o Homem que Calculava. Encarrego-me de realizar, com justiça, a divisão se me permitirem que junte aos 35 camelos da herança este belo animal, pertencente a meu amigo de jornada, que nos trouxe até aqui.
E, assim foi feito.
- Agora – disse Beremiz – de posse dos 36 camelos, farei a divisão justa e exata.
Voltando-se para o mais velho dos irmãos, assim falou:
- Deverias receber a metade de 35, ou seja, 17, 5. Receberás a metade de 36, portanto, 18. Nada tens a reclamar, pois é claro que saíste lucrando com esta divisão.
E, dirigindo-se ao segundo herdeiro, continuou:
- E tu, deverias receber um terço de 35, isto é, 11 e pouco. Vais receber um terço de 36, ou seja, 12. Não poderás protestar, pois tu também saíste com visível lucro na transação.
Por fim, disse ao mais novo:
- Tu, segundo a vontade de teu pai, deverias receber a nona parte de 35, isto é, 3 e tanto. Vais receber uma nona parte de 36, ou seja, 4. Teu lucro foi igualmente notável.
E, concluiu com segurança e serenidade:
- Pela vantajosa divisão realizada, couberam 18 camelos ao primeiro, 12 ao segundo, e 4 ao terceiro, o que dá um resultado (18+12+4) de 34 camelos. Dos 36 camelos, sobraram, portanto, dois. Um pertence a meu amigo de jornada. O outro, cabe por direito a mim, por ter resolvido, a contento de todos, o complicado problema da herança!
- Sois inteligente, ó Estrangeiro! – exclamou o mais velho dos irmãos. Aceitamos a vossa partilha na certeza de que foi feita com justiça e equidade!


A questão é: Qual a explicação matemática para a partilha realizada por Beremiz, de tal forma que além de conceder vantagens aos irmãos, ainda fez sobrar um camelo para si?


domingo, 4 de agosto de 2013

A história dos Três Porquinhos

O filho quer dormir e pede ao pai (engenheiro) para lhe contar uma história, o pai logo se prontificou e lhe contou a dos três porquinhos.
Meu Filho, era uma vez três porquinhos (P1, P2 e P3) e um Lobo Mau, por definição, LM, que os vivia atormentando. P1 era sabido, fazia Engenharia Mecatrônica e já era formado Engenheiro Civil e Tecnólogo Mecânico. P2 era arquiteto e vivia em fúteis devaneios estéticos absolutamente desprovidos de cálculos rigorosos. P3 fazia Comunicação e Expressão Visual.
LM, na Escala Oficial da ABNT, para medição da Maldade (EOMM) era Mau nível 8,75 (arredondando a partir da 3ª casa decimal para cima). LM também era um mega investidor imobiliário sem escrúpulos e cobiçava a propriedade que pertencia aos Pn (onde “n” é um número natural e varia entre 1 e 3), visto que o terreno era de boa conformidade geológica e configuração topográfica, localizado próximo a Granja Viana.
Mas nesse promissor perímetro P1 construiu uma casa de tijolos, sensata e logicamente planejada, toda protegida e com mecanismos automáticos. Já P2 montou uma casa de blocos articulados feitos de mogno que mais parecia um castelo lego tresloucado. Enquanto P3 planejou no Autocad e montou ele mesmo, com barbantes e isopor como fundamentos, uma cabana de palha com teto solar, e achava aquilo “o máximo”.
Um dia, LM foi ate a propriedade dos suínos e disse, encontrando P3:- “Uahahhahaha, corra, P3, porque vou gritar, e vou gritar e chamar o Conselho de Engenharia Civil para denunciar sua casa de palha projetada por um formando em Comunicação e Expressão Visual!” Ao que P3 correu para sua amada cabana, mas quando chegou lá os fiscais do Conselho já haviam posto tudo abaixo. Então P3 correu para a casa de P2.
Mas quando chegou lá, encontrou LM à porta, batendo com força e gritando:- “Abra essa porta, P2, ou vou gritar, gritar e gritar e chamar o Greenpeace, para denunciar que você usou madeira nobre de áreas não-reflorestadas e areia de praia para misturar no cimento.” Antes que P2 alcançasse a porta, esta foi posta abaixo por uma multidão ensandecida de ecos-chatos que invadiram o ambiente, vandalizaram tudo e ocuparam os destroços, pixando e entoando palavras de ordem. Ao que segue P3 e P2 correm para a casa de P1. Quando chegaram na casa de P1, este os recebe, e os dois caem ofegantes na sala de entrada.
P1: O que houve?
P2: LM, lobo mau por definição, nível 8.75, destruiu nossas casas e desapropriou os terrenos.
P3: Não temos para onde ir. E agora, que eu farei? Sou apenas um formando em Comunicação e Expressão Visual!
Tum-tum-tum-tum-tuuummm!!!! (isto é somente uma simulação de batidas à porta, meu filho! O som correto não é esse).
LM: P1, abra essa porta e assine este contrato de transferência de posse de imóvel, ou eu vou gritar e gritar e chamar os fiscais do Conselho de Engenharia em cima de você!!!, e se for preciso até aquele tal de Confea.
Como P1 não abria (apesar da insistência covarde do porco arquiteto e do… do… comunicador e expressivo visual) LM chamou os fiscais, e estes fizeram testes de robustez do projeto, inspeções sanitárias, projeções geomorfológicas, exames de agentes físico-estressores, cálculos com muitas integrais, matrizes, e geometria analítica avançada, e nada acharam de errado. Então LM gritou e gritou pela segunda vez, e veio o Greenpeace, mas todo o projeto e implementação da casa de P1 era ecologicamente correto.
Cansado e esbaforido, o vilão lupino resolveu agir de forma irracional (porém super-comum nos contos de fada): ele pessoalmente escalou a casa de P1 pela parede, subiu ate a chaminé e resolveu entrar por esta, para invadir. Mas quando ele pulou para dentro da chaminé, um dispositivo mecatrônico instalado por P1 captou sua presença por um sensor térmico e ativou uma catapulta que impulsionou com uma força de 33.300 N (Newtons) LM para cima.
Este subiu aos céus, numa trajetória parabólica estreita, alcançando o ápice, aonde sua velocidade chegou a zero, a 200 metros do chão. Agora, meu filho, antes que você pegue num repousar gostoso e o papai te cubra com este edredom macio e quente, admitindo que a gravidade vale 9,8 m/s² e que um lobo adulto médio pese 60 kg, calcule:
a) o deslocamento no eixo “x”, tomando como referencial a chaminé.
b) a velocidade de queda de LM quando este tocou o chão e
c) o susto que o Lobo Mau tomou, num gráfico lógico que varia do 0
(repouso) ao 9 (ataque histérico).
Resposta:
a) Sendo X o deslocamento horizontal, e a catapulta o tendo arremessado verticalmente para cima, a soma dos vetores demonstra que X=0. O advento de uma força externa, como o vento lateral poderia influir nesse valor, mas tais condições não foram abordadas no caso.
b) Para essa solução, usaremos: s = s0 + v0 * t+ 1/2 * a * t2
v = v0 + a * t. A altura declarada atingida é de 200m e nesse ponto temos v = 0m/s. Para os cálculos de velocidades, a massa não é necessária, como todos sabemos. Dado g=9,8 m/s2; | 200 = 0 + v0 + 1/2 * 9,8 * t2; | 0 = v0 + 9,8 * t
Resolvendo esse sistema com duas equações e duas variáveis, temos: t= 21,4s e v0 = 210m/s
c) O LM chega ao pico na escala de susto após perceber que foi projetado para cima. Quando a velocidade vetorial reduz, o LM tem a sensação de alívio, pois não está mais subindo. Após parar (instante t1), o início da queda o remete novamente à situação máxima de susto. O índice de susto cai abruptamente a 0 assim que ele toca o solo, virando PLM (pasta de lobo mal).

sexta-feira, 14 de junho de 2013

Plano de aula – Grupo 3 – Módulo 3 – MGME – Matemática – 15/06/2013

Plano de aula – Grupo 3 – Módulo 3 – MGME – Matemática – junho/2013
DIVISIBILIDADE
Objetivos 
- Saber mais sobre multiplicação e divisão. 
- Antecipar o resultado de certos cálculos e prever algumas características desses resultados. 

Conteúdos 
- Divisão. 
- divisibilidade. 

Ano 6º ano. 

Tempo estimado: 8 aulas 


Desenvolvimento 

1ª etapa 
A multiplicação com números de 2 algarismos (por exemplo 6 x 28) pode ser pensada com números de um dígito (2 x 3 x 4 x 7). Isso é interessante pois oferece a oportunidade de ler certas informações da escrita numérica que inicialmente não são evidentes. Apresente o exemplo citado para a turma e peça que, com base nele, escrevam as seguintes multiplicações usando apenas números de um algarismo: 
a) 4 x 15 = 
b) 36 x 24 = 
c) 25 x 18 = 
d) 12 x 21 = 
Analise com os alunos as informações obtidas e pergunte se é possível saber, sem fazer as contas, por quais números o produto da multiplicação é divisível. Por exemplo, se 36 x 24 = 4 x 9x 3 x 8, sabemos que o resultado será um número múltiplo de 4, 9, 3 e 8, os números eleitos para a decomposição ou de suas combinações possíveis – embora, não sejam os únicos. 

2ª etapa 
Para aprofundar o estudo, proponha que a garotada decida, sem fazer as contas, se as seguinte informações são verdadeiras: 
a) 35 x 24 tem o mesmo resultado que 4 x 5 x 3 x 7 x 2 
b) 18 x 15 tem o mesmo resultado que 7 x 2 x 9 x 5 
c) 5 x 5 x 9 x 2 tem o mesmo resultado que 15 x 30 
d) 3 x 7 x 2 x 14 tem o mesmo resultado que 21 x 28 
e) 12 x 36 tem o mesmo resultado que 27 x 16 
Se necessário, depois, é possível pedir que as crianças confirmem as respostas usando a calculadora.

3ª etapa 
Apresente para os alunos o seguinte problema: é possível resolver 24 x 36 usando as teclas da multiplicação (x), de igual (=), do 4 e do 6? E 24 x 37? Por quê? 
Neste caso, já não se trata apenas de decompor em fatores de um algarismo. É preciso ir além e determinar de antemão quais são esses fatores. Segundo Hector Ponce, pesquisador argentino de didática da Matemática , “pensar quais multiplicações compõem um número também permitem refletir sobre o funcionamento dos critérios de divisibilidade. Os critérios permitem saber, sem fazer a divisão, se um número é ou não divisível por outro. Isto é, se ao dividir um número A por outro B, o resto vai ou não ser zero. Acreditamos que os alunos devem saber isso, mas também e fundamentalmente, devem ter a oportunidade de se perguntar pelo seu funcionamento. Introduzir as crianças em um trabalho vinculado às justificativas dos critérios implica a partir da nossa perspectiva, convidá-los a percorrer um território particularmente fértil para explorar, argumentar, colocar em jogo conhecimentos de múltiplos e divisores, explicitar relações, pensar nas condições de validade de certa questão, etc.” 

4ª etapa 
Aprender critérios de divisibilidade é mais que decorar regras pré-estabelecidas e analisar se um determinado número compre ou não as condições esperadas. Por exemplo, ensinar que, para saber se um número é divisível por 4 basta verificar se os dois últimos algarismos são divisíveis por 4 ou se o número em questão termina em dois zeros, não é suficiente para que compreendam a regra. Dúvidas pertinentes como “por que só se termina com dois zeros é divisível por 4?”, “Por que também não é divisível por 4 números terminados com dois 5 (55)?”, “Por que só é divisível por 4 números terminados e não os iniciados por múltiplos de 4?”. 
Nas próximas etapas, os alunos são convidados a refletir sobre as regularidades e elaborar critérios de divisibilidade por 2, 5 e 4. Proponha que resolvam individualmente as questões a seguir. 
a) O número 426 é divisível por 2? 
b) Sem armar a conta ou usar a calculadora, responda se é possível dividir R$ 3.276,00 entre duas pessoas. Qual o valor que cada pessoa deverá receber, aproximadamente? Como resolveu esse problema? 
c) Faça os cálculos necessários, se desejar com a calculadora, para descobrir o valor que cada pessoa irá receber. O resultado obtido foi o mesmo que você afirmou mentalmente? 
d) Dê exemplos de outros números que você pode afirmar que são divisíveis por 2 sem fazer a conta.
e) Formule uma regra para divisão por 2. 
Discuta as respostas apresentadas pela turma e socialize os textos apresentados para a regra pedida na questão e. Por fim, proponha que os alunos, reunidos, formulem uma regra. É importante discutir com os estudantes que um número é divisível por outro quando o resto é zero. É esperado que a garotada conclua que todo número par é divisível por 2. 

5ª etapa 
Questione os estudantes se, um número que termina com zero, é divisível por 5. Pergunte se essa regra é válida para todos os números terminados em zero. Proponha que, em duplas, formulem uma regra que defina se um número é divisível por 5. É esperado que os alunos, tal como na etapa anterior, observem regularidades da tabuada e generalizem. Ao construírem e organizarem um repertório básico, os alunos podem observar algumas propriedades das operações, tais como a associatividade e a comutatividade da multiplicação. 

Avaliação e Recuperação 
Para analisar o que os alunos aprenderam, proponha uma ampliação do trabalho com regularidades, desta vez com o número 4. Desafie as crianças a realizar as seguintes atividades: 
Responda se os números abaixo são múltiplos de 4: 
a) 10, 20, 30, 40, 50, 60, 70, 80, 90 
b) 100, 200, 300, 400, 500, 600, 700, 800, 900 
Proponha que as crianças observem o que aconteceu. É esperado que observem que nem todos os números redondos de 2 algarismos são múltiplos de 4 (apenas 20, 40, 60 e 80). Porém, que todos os números redondos terminados em 00 são. Peça que elaborem uma regra, apoiando-se nas 3 primeiras etapas, em que precisavam recorrer à decomposição dos fatores em números de 1 algarismo, como 100 = 5 x 5 x 4. Retome que é possível pensar que os números terminados em 00 são múltiplos de 100 (por exemplo, 200 = 2 x 100, etc.). Então, todos os terminados em 00 são múltiplos de 4 (200 = 2 x 100 = 2 x 5 x 5 x 4).

 

O uso da narrativa em divisibilidade

De que vale ser um resolvedor de problemas de divisibilidade se isso não significará uma aprendizagem significativa para os alunos, mas apenas o mecanicismo e a repetição, onde números são simplesmente trocados em exercícios pré-resolvidos?
A competência para a resolução de exercícios de divisibilidade deve vir acompanhada da aquisição de outras habilidades e competências, como a leitura, a escrita, a interpretação do texto, o raciocínio lógico, entre outros...
Para isso, nada melhor que ensinar os alunos a resolverem exercícios começando por fazê-los interpretar o exercício em questão e, para isso, podemos pensar: como estimulá-los a ler e escrever?
Trabalhar com narrativa pode tornar possível esse estímulo para a leitura e escrita, bem como para a introdução de conceitos, uma vez que mostrará aos alunos um significado e sentido para o estudo daquele conteúdo, não como mais um problema a ser resolvido e repetido em uma lista de exercícios.
Acredito que não só a história da Matemática deve ser trabalhada nas aulas de Matemática, mas de vários ramos da ciência, até mesmo para que os alunos deixem de ter uma visão fragmentada do ensino.

segunda-feira, 10 de junho de 2013

Origem primitiva da matemática

Os matemáticos de hoje em dia se baseiam muito em demonstrações atuais, envolvendo a chamada “matemática pura” que só desenvolveu-se dando mais ênfase a ciência a partir do século XIX. Porém tudo antes desse grande século de proveito significativo a matemática aparecia com inúmeras concepções que poderíamos tratar como pré-requisitos mas que o homem analisaria e estudaria tudo de uma forma bem primitiva . Muitas definições matemáticas hoje utilizadas e adotadas de forma padrão, tiveram origem nos primeiros tempos da raça humana, como os princípios de contagem, a distinção de algarismos, formas , conjuntos e unidades.
O que podia-se perceber é que a própria observação da natureza nos conduzia  a identificar a diferença de quantidade entre elementos iguais, como por exemplo: uma única abelha e um enxame, a abelha representando a unicidade e o enxame um conjunto diferenciando o muito e o pouco. A nossa afirmação como atribuição do número como forma de representação se torna mais clara e direta quando o homem primitivo adota uma certa linguagem de sinais usando dedos dos pés e das mãos ou até mesmo alguns materiais concretos como pedras que auxiliavam nos métodos de contagem. Curiosamente acredita-se que em grupos de cinco em cinco elas se agrupavam, pelo fato do números de dedos nas mão serem cinco. Esse fato ocorria para as representações de números maiores não sendo possível a representação, somente a combinação que representaria os números pelos membros.
O desenvolvimento da comunicação e da fala pelo homem primitivo foi de grande auxilio para o desenvolvimento dopensamento abstrato da matemática, fazendo com que a linguagem da matemática concreta se aproximasse muito com o da matemática  abstrata. Assim como alguns rumores da história da matemática  conta que a forma de linguagem para números pares e ímpares teria sido a separação ou distinção  dentro de certas tribos como membros do sexo masculino e membros do feminino, representando um com número par e outro com número impar a fim de se estabelecer uma ordem.
Afirmar sobre conceitos e de fato as origens da matemática é um pouco complicado, pois as noções primitivas aparecem antes da escrita. Um importante fato  referindo a essas afirmações, seria onde teria surgido a geometria, pois não existem documentos nem provas de que como a “matemática em formas” teria surgido, acredita-se que a necessidade e a observação quanto a criações, mostram que possa ter sido no Egito, mas no entanto não podemos afirmar pois não a nada em que nos apoiar como provas a origem da geometria. A história da matemática esta só em documentos da época.
Bibliografia:
História da Matemática – Carl B Boyer
“Stone age mathematic” – Strik, D.

domingo, 9 de junho de 2013

357314 53GURO

357314 53GURO
3M D14 D3 V3R40, 3574V4 N4 PR414, 0853RV4ND0 DU45 CR14NC45 8R1NC4ND0 N4 4R314. 3L45 7R484LH4V4M MU170 C0N57RU1ND0 UM C4573L0 D3 4R314, C0M 70RR35, P4554R3L45 3 P4554G3NS 1N73RN45. QU4ND0 3574V4M QU453 4C484ND0, V310 UM4 0ND4 3 D357RU1U 7UD0, R3DU21ND0 0 C4573L0 4 UM M0N73 D3 4R314 3 35PUM4.
4CH31 QU3, D3P015 D3 74N70 35F0RC0 3 CU1D4D0, 45 CR14NC45 C41R14M N0 CH0R0.
C0RR3R4M P3L4 PR414, FUG1ND0 D4 4GU4, R1ND0 D3 M405 D4D45 3 C0M3C4R4M 4 C0N57RU1R 0U7R0 C4573L0.
C0MPR33ND1 QU3 H4V14 4PR3ND1D0 UM4 GR4ND3 L1C40; G4574M05 MU170 73MP0 D4 N0554 V1D4 C0N57RU1ND0 4LGUM4 C0154 3 M415 C3D0 0U M415 74RD3, UM4 0ND4 P0D3R4 V1R 3 D357RU1R 7UD0 0 QU3 L3V4M05 74N70 73MP0 P4R4 C0N57RU1R. M45 QU4ND0 1550 4C0N73C3R 50M3N73 4QU3L3 QU3 73M 45 M405 D3 4LGU3M P4R4 53GUR4R, 53R4 C4P42 D3 50RR1R! S0 0 QU3 P3RM4N3C3 3 4 4M124D3, 0 4M0R 3 C4R1NH0.
0 R3570 3 F3170 D3 4R314

ftp://ftp.unilins.edu.br/formigoni/utilitarios/O_Homem_que_Calculava.pdf

ftp://ftp.unilins.edu.br/formigoni/utilitarios/O_Homem_que_Calculava.pdf

http://www.matematicamuitofacil.com/

http://www.matematicamuitofacil.com/

http://www.youtube.com/results?search_query=khan+academy+em+portugues

http://www.youtube.com/results?search_query=khan+academy+em+portugues

https://pt.khanacademy.org/

https://pt.khanacademy.org/

http://www.mais.mat.br/wiki/P%C3%A1gina_principal

http://www.mais.mat.br/wiki/P%C3%A1gina_principal

http://rived.mec.gov.br/site_objeto_lis.php

http://rived.mec.gov.br/site_objeto_lis.php

http://m3.ime.unicamp.br/

http://m3.ime.unicamp.br/

sábado, 8 de junho de 2013

Música: Aula de Matemática (Antônio Carlos Jobim)

http://wwwbrincandomat.blogspot.com.br/2009/05/blog-post.html

Por que estudar Matemática?

A principal razão para se estudar a matemática de nível avançado é que ela é interessante e prazerosa. As pessoas gostam de sua característica desafiadora, de sua clareza e do fato de que você pode saber se está certo ou não. A solução de um problema provoca uma excitação e uma satisfação. 
Você vai encontrar todos estes aspectos num curso de nível superior. Você também deve estar ciente da enorme importância da matemática e do modo como ela está avançando numa velocidade espetacular.

Matemática é sobre padrões e estruturas; ela é sobre análise lógica, dedução, cálculo dentro de padrões e estruturas. Quando os padrões são encontrados, frequentemente em muitas áreas diferentes da ciência e da tecnologia, a matemática destes padrões pode ser usada para explicar e controlar situações e acontecimentos naturais. A matemática tem uma influência persuasiva em nossas vidas cotidianas e contribuem para a riqueza do país.
A importância da matemática
O uso diário da aritmética e a apresentação de informações através de gráficos são lugares comuns no nosso dia a dia. Estes são os aspectos elementares da matemática. A matemática avançada é amplamente usada, mas frequentemente de um modo invisível e inesperado. A matemática dos códigos de correção de erros é aplicada a aparelhos de CD e a computadores. As fotos estonteantes de longínquos planetas enviadas pelo Voyager II não poderiam ter sua clareza e sua qualidade sem esta matemática. 
A jornada do Voyager aos planetas não poderia ter sido calculada sem a matemática das equações diferenciais. Sempre que se diz que avanços são feitos com supercomputadores, tem de se saber que é preciso ter uma teoria matemática que instrui o computador sobre o que deve ser feito, desse modo permitindo a ele que aplique sua capacidade de rapidez e exatidão.
O desenvolvimento dos computadores foi iniciado nos Estados Unidos pelos matemáticos e lógicos que continuam a dar importantes contribuições à teoria da ciência da computação. A próxima geração de softwares requer os métodos matemáticos mais recentes daquela que é chamada teoria das categorias, uma teoria de estruturas matemáticas que tem trazido novas perspectivas aos fundamentos da matemática e da lógica. As ciências físicas (química, física, oceanografia, astronomia) requerem matemática para o desenvolvimento de suas teorias.
Em ecologia, a matemática tem sido usada quando se estudam as leis da dinâmica populacional. A estatística fornece teoria e métodos para a análise de muitos tipos de dados. A estatística também é essencial em medicina para a análise de dados das causas de doenças e da utilidade de novas drogas. 
A viagem de avião não teria sido possível sem a matemática dos fluxos de ar e do controle de sistemas. Scanners de corpo é a expressão de matemática sutil, descoberta no Século 19, que torna possível a construção de uma imagem do interior do objeto a partir da informação de certo número de visualizações dele por meio de raios-X.
Assim, a matemática é frequentemente envolvida com as questões de vida e de morte. Estas aplicações têm sido desenvolvidas frequentemente a partir do estudo de ideias gerais por si mesmas: números, simetria, área e volume, taxa de variação, forma, dimensão, aleatoriedade e muitas outras.
A matemática faz contribuições especiais ao estudo destas ideias, a saber, os métodos de definições precisas; argumentos cuidadosos e rigorosos; representação de ideias por meio de vários métodos, incluindo símbolos e fórmulas, figuras e gráficos; métodos de cálculo; e a obtenção de soluções precisas de problemas claramente enunciados, ou afirmações claras dos limites do conhecimento. Estas características permitem à matemática fornecer um fundamento sólido a muitos aspectos da vida cotidiana, e oferecer uma compreensão das complexidades inerentes a situações aparentemente muito simples.
Por estas razões, matemáticas e cálculo têm sido associados desde os primeiros tempos. Nos tempos modernos, a necessidade de cálculos matemáticos muito rápidos em tempos de guerra, particularmente em balística e em decodificação, foi um forte estímulo para o desenvolvimento do computador eletrônico. 
A existência de computadores de alta velocidade agora ajuda os matemáticos a calcular e a visualizar situações como nunca antes. Estes cálculos também se desenvolveram do cálculo numérico ao cálculo simbólico e, atualmente, ao cálculo das próprias estruturas matemáticas. 
Este último é muito recente e parece estar levando a uma grande transformação. Estas capacidades mudam não a natureza da matemática, mas o poder do matemático, que aumenta talvez um milhão de vezes a possibilidade de compreender, de questionar e de explorar.
Existe também uma interação no sentido contrário. A noção de computação não teria adquirido sentido sem a Matemática, e foi a análise dos métodos matemáticos feita pelos matemáticos que levou à noção de computador programável.
De fato, dois matemáticos, Von Neumann nos Estados Unidos e Turing na Inglaterra são conhecidos como os pais dos computadores modernos. A análise da computação e as tentativas de torná-la tão confiável quanto possível, precisa de Matemática profunda, e esta necessidade está aumentando. 
Um computador, a menos que seja programado, é nada mais do que uma caixa de metal, vidro, silício, etc. A programação expressa algoritmos de uma forma adequada para o computador.
A Matemática é necessária como uma linguagem para a especificação, para a determinação do que é que deve ser feito, como e quando, e para a verificação de que os programas e os algoritmos funcionam corretamente. A Matemática é essencial para o uso correto dos computadores na maioria das aplicações e as necessidades matemáticas da computação têm originado muitas questões novas e excitantes.